设 $f:\bbR^2\to \bbR$ 为连续函数, 且满足条件 $$\bex f(x+1,y)=f(x,y+1)=f(x,y),\quad\forall\ (x,y)\in \bbR^2. \eex$$ 证明: $f$ 是一致连续函数.
本文共 120 字,大约阅读时间需要 1 分钟。
设 $f:\bbR^2\to \bbR$ 为连续函数, 且满足条件 $$\bex f(x+1,y)=f(x,y+1)=f(x,y),\quad\forall\ (x,y)\in \bbR^2. \eex$$ 证明: $f$ 是一致连续函数.
转载地址:http://kztwl.baihongyu.com/